欢迎来到得力文库 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
得力文库 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年超几何分布、二项分布、正态分布 .pdf

    • 资源ID:33660011       资源大小:305.15KB        全文页数:5页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年超几何分布、二项分布、正态分布 .pdf

    超几何分布、二项分布、正态分布【学习目标】1、通过实例,理解超几何分布及其特点,掌握超几何分布列及其导出过程,并能进行简单的应用。2、理解n 次独立重复试验(即 n 重伯努利试验 )及其意义,理解二项分布并能解决一些简单的实际问题。3、借助直观图,了解是正态分布曲线与正态分布,认识正态分布曲线的特点及曲线表示的意义。4、会查标准正态分布表,会求满足正态分布的随机变量x 在某一范围内的概率。【重点与难点】重点: 正确理解超几何分布、二项分布、正态分布的意义。难点: 正确进行超几何分布、二项分布、正态分布有关概率的计算。【知识要点】1、超几何分布:一般地,若一个随机变量x 的分布列为:P(xr)其中 r0,1,2,3, , , min(n ,M) ,则称 x 服从超几何分布。记作 x H(n,M,N) ,并将 P(xr),记为 H(r,n,M, N)。如:在一批数量为N 件的产品中共有M 件不合格品,从中随机取出的n 件产品中,不合格品数 x 的概率分布列如表一所示:(表一 ) 其中min(n ,M),满足超几何分布。2、伯努利试验(n 次独立重复试验),在n 次相互独立试验中,每次试验的结果仅有两种对立的结果A 与出现, P(A) p(0,1),这样的试验称为n 次独立重复试验,也称为伯努利试验。P()1pq,则在 n 次独立重复试验中,事件A 恰好发生k 次的概率 (0kn)为 P(k)(k0,1,2, 3, ,n),它恰好是 (qp)n的二项展开式中的第k1 项。3、二项分布: 若随机变量x 的分布列为p(xk),其中 0p 1,pq1,k名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 5 页 - - - - - - - - - 0,1,2, , n,则称 x 服从参数为n、p 的二项分布,记作xB(n ,p)。如: n 次射击中,击中目标k 次的试验或投掷骰子n 次,出现 k 次数字 5 的试验等均满足二项分布。3、正态分布曲线。(1)概率密度曲线:当数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,则称此曲线为概率密度曲线。(2)正态密度曲线:概率密度曲线对应表达式为P(x)(x R)的曲线称之为正态密度曲线。正态密度曲线图象特征:当 x时曲线上升;当x时曲线下降;当曲线向左右两边无限延伸时,以x 轴为渐近线。正态曲线关于直线x对称。 越大,正态曲线越扁平;越小,正态曲线越尖陡。在正态曲线下方和x 轴上方范围内的区域面积为1。4、正态分布:若 x 是一个随机变量,对任意区间,P恰好是正态密度曲线下方和 x 轴上上方所围成的图形的面积,我们就称随机变量x 服从参数为和 的正态分布,简记为xN( , 2)。在现实世界中很多随机变量遵循正态分布。如:反复测量某一个物理量,其测量误差x 通常被认为服从正态分布;某一地区同性别同年龄组儿童的体重W 也近似地服从正态分布。若 xN( ,2),则随机变量x 在 的附近取值的概率很大,在离 很远处取值的概率很少。如图一所示:随机变量x 取值落在区间( , ) 上的概率约为68.3%,落在区间 ( 2 , 2)上的概率约为95.4%,落在区间 ( 3 , 3) 上的概率约为99.7%。其中, 实际上就是随机变量x 的均值, 2为随机变量x 的方差,它们分别反映x 取值的平均大小和稳定程度。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 5 页 - - - - - - - - - 5、标准正态分布:正态分布N(0,1)称为标准正态分布,此时,P(x)(xR) ,通过查标准正态分布表可以确定服从标准正态分布的随机变量的有关概率。数学家们发现,在多种微小因素影响下,如果没有一种影响占主导地位,则这样的随机变量服从正态分布,特别是在独立地大数量重复试验时,就平均而言, 任何一个随机变量的分布都将趋近于正态分布,这就是中心极限定理,中心极限定理告诉我们在平均重复观察多次后,我们可以利用正态分布对随机事件进行分析和预报。可以证明, 对任一正态分布xN( , 2)来说,都可以通过z转化为标准正态分布zN(0,1)。6、利用 Excel 进行有关概率计算。(1) 超几何分布函数计算:按“ 插入 /函数 /统计 ” 选择超几何分布函数“HYPGEOMDIST”,然后依次输入r、n、M 、N 的值,或直接在单元格内输入“ HYPGEOMDIST(4;5,10,30)” 即可得到后边例1 中 H(4;5,10,30)的值,约为0.029472443 。(2)二项分布函数计算:选择“ 插入 /函数 /统计 ” ,选择二项分布函数“BINOMDIST ” ,然后依提示输入相应的参数k、n、p 的值,或在单元格内直接输入“ BINOMDIST(80,10000,0.006,1) ” 即可得到后面例4 中 P(x 80) 的值,约为0.994。(3) 正态分布函数计算:选择“ 插入 /函数 /统计 ” ,选择正态分布函数“NORMDIST” ,输入相应参数 x、 、的值,或在单元格内直接输入“ NORMDIST(184.5 , 184,2.5,1)” ,就可得到后边例 6 中 P(x184.5) 的值,约为0.5793。7、二项分布的近似计算。对于二项分布函数,当n 比较大,而p 比较小 (p0.1) ,而乘积np 大小 “ 适中 ” 时,可以利用近似公式P(x k)来计算。【典型例题分析】例 1:高三 (1)班的联欢会上设计了一项游戏:在一个口袋中装有10 个红球, 20 个白球,这些球除颜色外完全相同,一次从中摸出5 个球, 摸到 4 个红球一个白球就中一等奖,求中一等奖的概率。解: 以 30 个球为一批产品,其中红球为“ 不合格品 ” ,随机抽取5 个球, x 表示抽到的红球数,则 x 服从超几何分布H(5,10, 30),由超几何分布公式可得:H(4;5,10,30)0.0295 ,所以获一等奖的概率约为2.95%。例 2: 生产方提供50 箱的产品中,有两箱不是合格产品,采购方接收该批产品的准则是:从该批产品中任取5 箱产品进行检测,若其中的不合格产品不超过一箱,则接收该批产品,问:该批产品被接收的概率是多少?名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 5 页 - - - - - - - - - 解: 用 x 表示 5 箱中的不合格品的箱数,则 x 服从超几何分布H(5,2,50),这批产品被接收的条件是5 箱中有 0 或 1 箱不合格产品,故该产品被接收的概率为P(x1) 即:P(x1) P(x0)P(x1)0.992 答: 该批产品被接收的概率约为99.2%。例 3:求抛掷 100 次均匀硬币,正好出现50 次正面向上的概率。分析: 将一枚均匀硬币随机抛掷100 次,相当于做了100 次独立重复试验,每次试验有两个可能结果,即出现正面(A) 与出现反面 ()且 P(A) P()0.5。解: 设 x 为抛掷 100 次硬币出现正面的次数,依题意随机变量xB(100,0.5),则 P(x50)8% 。答: 随机抛掷100 次均匀硬币,正好出现50 次正面的概率约为8%。例 4:某保险公司规定:投保者每人每年交付公司保险费120 元的人身意外保险,则投保者意外伤亡时,公司将赔偿10000 元,如果已知每人每年意外死亡的概率为0.006,若该公司吸收10000 人参加保险,问该公司赔本及盈利额在400000 元以上的概率分别有多大?解: 设这 10000 人中意外死亡的人数为x,根据题意, x B(10000 , 0.006),P(xk),当死亡人数为x 人时,公司要赔偿x 万元,此时,公司的利润为(120 x)万元,由上述分布,公司赔本的概率为:P(120 x0)1P(x120) 110 ,这说明,公司几乎不会赔本,利润不少于400000 元的概率为:P(120 x40) P(x80) 0.994 ,即公司约有99.4%的概率可以赚到400000 元以上。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 5 页 - - - - - - - - - 例 5:若随机变量zN(0 ,1),查标准正态分布表,求:(1)P(z 1.52) ;(2)P(z1.52);(3)P(0.57 z2.3) ; (4)P(z 1.49)。解: (1)P(z 1.52) 0.9357。(2)P(z 1.52)1P(z1.52) 10.93570.0643 。(3)P(0.57 z2.3) P(z2.3) P(z0.57) 0.98930.71570.2736。(4)P(z 1.49)P(z1.49) 1P(z1.49) 10.9319 0.0681。例 6:某批待出口的水果罐头,每罐净重x(g) 服从正态分布N(184 ,2.52),求:(1) 随机抽取一罐,其实际净重超过184.5g 的概率。(2) 随机抽取一罐,其实际净重在179g 与 189g 之间的概率。解: (1)P(x 184.5) P P(z 0.2) 1 P(z0.2) 1 0.5793 0.4207。(2)P(179 x189) P P(2z2) P(z2) P(z 2) P(z2) P(z2) P(z2) 1P(z2) 2P(z2) 12 0.977210.9544 答: 随机抽取一罐,其实际净重超过184.5g 的概率是0.4207,在 179g 与 189g 之间的概率是 0.9544。例 7:某电话站为300 个电话用户服务,在一个小时内每一个电话用户,使用电话的概率等于 0.01,求在一个小时内有4 个用户使用电话的概率。解: 设 A 表示一个用户在这一小时内使用电话的事件,记 pP(A) 0.01,qP()0.99,本题相当于进行300 次独立的贝努利试验,事件A 出现的次数k4,故 其 所 求 概 率 为P(k) 0.169 。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 5 页 - - - - - - - - -

    注意事项

    本文(2022年超几何分布、二项分布、正态分布 .pdf)为本站会员(H****o)主动上传,得力文库 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知得力文库 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于得利文库 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

    © 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

    黑龙江省互联网违法和不良信息举报
    举报电话:0468-3380021 邮箱:hgswwxb@163.com  

    收起
    展开