欢迎来到得力文库 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
得力文库 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数据库复习预习题2(内容答案).doc

    • 资源ID:566235       资源大小:488.50KB        全文页数:9页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数据库复习预习题2(内容答案).doc

    .复习题(2)1、 试分别判断下列图中G1和G2是否互模拟(bisimulation),并说明理由:a a ab c cbG1= G2=a bca bc cG1 G2dd d答案:(1) 在图中标出各点的状态,我们构造关系,可知 G2 可以模拟 G1,下面我们讨论.是否可模拟,在 G2 中 有一个 a 变换可对应到 G1 中 2 个变换,即 ,。但 有两个变换 b,c,而在 G1 中仅存在只有 b 或只有 c 的状态点,可知 G1 和 G2 不能互模拟。(2) 如图,标出各状态点,构造有关系可知其中 G1 中的点均可由 G2 中的点模拟,下面我们考虑可知同样其中 G2 中的点均可由 G1 中的点模拟. 所以 G1 和 G2 为互模拟的。2、 给定如下数据图(Data Graph) : r1c1 c2s2s3 s6s7s10company companynameadres nameurladres“Widget”“Trento” “Gadget”“w.gp.fr”“Paris”p2p1 p3s0s1 s4s5 8s9person erson person“Smith”namepositn namephoe nameositn“Manger” “Jones”“521” “Dupont”“Sale”eploymagsceowrks-frwk-fr wrks-forc试给出其 Strong DataGuide 图.答案:r1p1,p2,p3 c1,c2s0,s4,s8 s1,s9 s5 s2,s6 s3,s7 s10p2p1,p3personname positionphone name address urlceoemployeemanagesworks-forStrong DataGuide 图3、 Consider the relation, r , shown in Figure 5.27. Give the result of the following query :Figure 5.27Query 1:select building, room number, time_slo_ id, count(*)from rgroup by rollup (building, room number, time_slo_ id)Query 1:select building, room number, time_slo_ id, count(*)from rgroup by cube (building, room number, time_slo_ id)答案:Query 1返回结果集:为以下四种分组统计结果集的并集且未去掉重复数据。building room number time_slo_ id count(*)产生的分组种数:4 种;.第一种:group by A,B,CGarfield 359 A 1Garfield 359 B 1Saucon 651 A 1Saucon 550 C 1Painter 705 D 1Painter 403 D 1第二种:group by A,BGarfield 359 A 2Garfield 359 B 2Saucon 651 A 1Saucon 550 C 1Painter 705 D 1Painter 403 D 1第三种:group by AGarfield 359 A 2Garfield 359 B 2Saucon 651 A 2Saucon 550 C 2Painter 705 D 2Painter 403 D 2第四种:group by NULL。本没有 group by NULL 的写法,在这里指是为了方便说明,而采用之。含义是:没有分组,也就是所有数据做一个统计。例如聚合函数是 SUM 的话,那就是对所有满足条件的数据进行求和。Garfield 359 A 6Garfield 359 B 6Saucon 651 A 6Saucon 550 C 6Painter 705 D 6Painter 403 D 6Query 2:group by 后带 rollup 子句与 group by 后带 cube 子句的唯一区别就是:带 cube 子句的 group by 会产生更多的分组统计数据。 cube 后的列有多少种组合(注意组合是与顺序无关的)就会有多少种分组。返回结果集:为以下八种分组统计结果集的并集且未去掉重复数据。building room number time_slo_ id count(*)产生的分组种数:8 种第一种:group by A,B,CGarfield 359 A 1Garfield 359 B 1Saucon 651 A 1.Saucon 550 C 1Painter 705 D 1Painter 403 D 1第二种:group by A,BGarfield 359 A 2Garfield 359 B 2Saucon 651 A 1Saucon 550 C 1Painter 705 D 1Painter 403 D 1第三种:group by A,CGarfield 359 A 1Garfield 359 B 1Saucon 651 A 1Saucon 550 C 1Painter 705 D 2Painter 403 D 2第四种:group by B,CGarfield 359 A 2Garfield 359 B 2Saucon 651 A 1Saucon 550 C 1Painter 705 D 1Painter 403 D 1第五种:group by AGarfield 359 A 2Garfield 359 B 2Saucon 651 A 2Saucon 550 C 2Painter 705 D 2Painter 403 D 2第六种:group by BGarfield 359 A 2Garfield 359 B 2Saucon 651 A 1Saucon 550 C 1Painter 705 D 1Painter 403 D 1第七种:group by CGarfield 359 A 2Garfield 359 B 1Saucon 651 A 2Saucon 550 C 1.Painter 705 D 2Painter 403 D 2第八种:group by NULLGarfield 359 A 6Garfield 359 B 6Saucon 651 A 6Saucon 550 C 6Painter 705 D 6Painter 403 D 64、 Disks and Access TimeConsider a disk with a sector扇区 size of 512 bytes, 63 sectors per track磁道, 16,383 tracks per surface盘面, 8 double-sided platters柱面 (i.e., 16 surfaces). The disk platters rotate at 7,200 rpm (revolutions per minute).The average seek time is 9 msec, whereas the track-to-track seek time is 1 msec.Suppose that a page size of 4096 bytes is chosen. Suppose that a file containing 1,000,000 records of 256 bytes each is to be stored on such a disk. No record is allowed to span two pages (use these numbers in appropriate places in your calculation).(a) What is the capacity of the disk?(b) If the file is arranged sequentially on the disk, how many cylinders are needed?(c) How much time is required to read this file sequentially?(d) How much time is needed to read 10% of the pages in the file randomly?Answer:(a) Capacity = sector size * num. of sectors per track * num. of tracks per surface * num of surfaces = 512 * 63 * 16383 * 16 = 8 455 200 768(b) File: 1,000,000 records of 256 bytes eachNum of records per page: 4096/256 = 161,000,000/ 16 = 62,500 pages or 62,500 * 8 = 500,000 sectorsEach cylinder has 63 * 16 = 1,008 sectorsSo we need 496.031746 cylinders.(c) We analyze the cost using the following three components:Seek time: This access seeks the initial position of the file (whose cost can be approximated using the average seek time) and then seeks between adjacent tracks 496 times (whose cost is the track-to-track seek time). So the seek time is 0.009 + 496*0.001 = 0.505 seconds.Rotational delay: The transfer time of one track of data is 1/ (7200/60) = 0.0083 seconds.For this question, we use 0.0083/2 as an estimate of the rotational delay (other numbers between 0 and 0.00415 are also fine). So the rotational delay for 497 seeks is 0.00415 * 497 = 2.06255.Transfer time: It takes 0.0083*(500000/63) = 65.8730159 seconds to transfer data in 500,000 sectors.Therefore, total access time is 0.505 + 2.06255 + 65.8730159 = 68.4405659 seconds.(d) number of pages = 6250time cost per page: 0.009 (seek) + 0.0083/2 (rotational delay) + 0.0083*8/63 (transfer) = 0.0142 secondstotal cost = 6250 * 0.0142 = 88.77 seconds5、 Disk Page Layout The figure below shows a page containing variable length records. The page size is 1KB (1024 bytes). It contains 3 records, some free space, and a slot directory in that order. Each record has its record id, in the form of Rid=(page id, slot number), as well as its start and end addresses in the page, as shown in the figure.Now a new record of size 200 bytes needs to be inserted into this page. Apply the record insertion operation with page compaction, if necessary. Show the content of the slot directory after the new record is inserted. Assume that you have only the page, not any other temporary space, to work with.Answer: Content of the slot directory, from left to right, is:(650, 200), (0, 200), (500, 150), (200, 300), 4, 8506、 Buffer Management for File and Index Accesses Consider the following two relations: student(snum:integer, sname:char(30), major:char(25), standing:char(2), age:integer) enrolled(snum:integer, cname:char(40)The following index is available:A B+ Tree index on the attribute of the student relation.Assume that the buffer size is large enough to store multiple paths of each B+ Tree but not an entire tree.(a) Consider Query 1 and Query 2 that retrieve the snums of students who have taken Database Systems and Operating Systems, respectively, from the enrolled table. We know that Query 1 will be executed before Query 2, and both queries are executed using a file scan of the enrolled table.Which replacement policy would you recommend for the buffer manager to use to support this workload?(b) Now assume that we have retrieved the snums of students who have taken Database Systems from the enrolled table. In the exact order of the retrieved snums (not necessarily in sorted order),we then retrieve the names of those students via repeated lookups in the B+ Tree on .For these repeated accesses to the index on student.snum, which replacement policy would you recommend for efficient buffer management?.Query 1:select snumfrom student s, enrolled ewhere s.snum=e.snum and cname like Database Systems;Query 2:select snumfrom student s, enrolled ewhere s.snum=e.snum and cname like Operating Systems;Answer: (a) Not LRU. MRU or LRU2.(b) Now we have repeated equality searches over the B+ Tree on , with no duplicate values in the search key (because the schema does not allow a student to take the same course twice). Two possible answers:- The B+ Tree pages close to the top are repeated accessed but those at the leaf level are rarely reused. So we can use LRU.- LIFO (Last In First Out) is another possible answer. This is because over time, we have cached most nodes close to the top in memory. So the nodes recently read from the disk are mostly close to the leaves. So LIFO will replace those leaf or close-to-leaf nodes to make room for the newly requested nodes.- We also accept other answers if the student can justify well.

    注意事项

    本文(数据库复习预习题2(内容答案).doc)为本站会员(一***)主动上传,得力文库 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知得力文库 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于得利文库 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

    © 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

    黑龙江省互联网违法和不良信息举报
    举报电话:0468-3380021 邮箱:hgswwxb@163.com  

    收起
    展开