欢迎来到得力文库 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
得力文库 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021_2021学年高中数学第一章统计案例1.1回归分析的基本思想及其初步应用课时素养评价含解析新人教A版选修1_.doc

    • 资源ID:30781681       资源大小:549KB        全文页数:10页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021_2021学年高中数学第一章统计案例1.1回归分析的基本思想及其初步应用课时素养评价含解析新人教A版选修1_.doc

    一回归分析的基本思想及其初步应用 (15分钟30分)1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n)用最小二乘法建立的回归直线方程为=0.85x-85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg【解析】选D.因为回归直线方程中的=0.85>0,所以y与x具有正的线性相关关系,A选项正确;又因为回归直线过样本点的中心(,),所以选项B正确;又因为线性回归直线方程得出的值是近似值,所以选项C正确,选项D不正确.2.如表是某厂14月份用水量(单位:百吨)的一组数据:由表中数据可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是=-0.7x+a,则a=()A.5.25B.5.15C.5.2D.10.5【解析】选A.因为=2.5,=3.5,回归直线方程必过定点(,),所以3.5=-0.7×2.5+a,所以a=5.25.3.某学校开展研究性学习活动,某同学获得一组实验数据如表:对于表中数据,现给出下列拟合曲线,其中拟合程度最好的是()A.y=2x-2B.y=C.y=log2xD.y=(x2-1)【解析】选D.可以代入检验,残差平方和最小的拟合程度最高.4.在研究身高和体重的关系时,求得R2_,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”,所以身高对体重的效应比随机误差的效应大得多. 【解析】结合相关指数的计算公式R2=1-可知,当R20.64时,身高解释了64%的体重变化.答案:0.645.高二(3)班学生每周用于数学学习的时间x(单位:h)与数学成绩y(单位:分)之间有如表所示数据:若某同学每周用于数学学习的时间为18 h,试预测该同学的数学成绩.【解析】显然学习时间与学习成绩间具有相关关系,可以列出下表,并用科学计算器进行计算.设回归方程为=x+,于是可得=3.53,=-74.9-3.53×17.413.5.因此可求得回归方程为=3.53x+13.5.当x=18时,=3.53×18+13.577.故预测该同学可得77分.【补偿训练】某农场对单位面积化肥用量x(kg)和水稻相应产量y(kg)的关系进行了统计,得到数据如下:如果x和y之间具有线性相关关系,求出回归直线方程,并预测当单位面积化肥用量为32 kg时,水稻的产量大约是多少?(精确到0.01 kg)【解析】用列表的方法计算与回归系数.=×210=30,=×2 795399.3,=4.746,=399.3-4.746×30=256.92,y对x的回归直线方程为=+x=256.92+4.746x,当x=32时,=256.92+4.746×32408.79.答:回归直线方程为=256.92+4.746x,当单位面积化肥用量为32 kg时,水稻的产量大约为408.79 kg. (30分钟60分)一、选择题(每小题5分,共25分)1.某产品的宣传费用x与销售额y的统计数据如表:根据表格可得回归方程=x+中的为9.4,据此模型预报宣传费用为6万元时,销售额为()A.63.6万元B.65.5万元C.67.7万元D.72.0万元【解析】选B.因为=-=-9.4×=9.1,所以回归方程为=9.4x+9.1.令x=6,得=9.4×6+9.1=65.5(万元).2.下列四个命题中正确的是()在线性回归模型中,e是bx+a预报真实值y的随机误差,它是一个观测的量;残差平方和越小的模型,拟合的效果越好;用R2来刻画回归方程,R2越小,拟合的效果越好;在残差图中,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,带状区域宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高.A.B.C.D.【解析】选B.e是预报变量y的随机误差,故不正确;R2越接近1,拟合的效果越好,故不正确.3.若一函数模型为y=sin2+2sin +1,为将y转化为t的回归直线方程,则需作变换t等于()A.sin2B.(sin +1)2C.D.以上都不对【解析】选B.因为y是关于t的回归直线方程,实际上就是y关于t的一次函数,又因为y=(sin +1)2,若令t=(sin +1)2,则可得y与t的函数关系式为y=t,此时变量y与变量t是线性相关关系.4.两个变量的散点图如图,可考虑用如下函数进行拟合比较合理的是()A.y=a·xbB.y=a+bln xC.y=a·ebxD.y=a·【解析】选B.由散点图知,此曲线类似对数函数型曲线,因此可用函数y=a+bln x模型进行拟合.5.已知x与y之间的几组数据如表:假设根据表中数据所得线性回归方程为=x+,若某同学根据表中的前两组数据(1,0)和(2,2)求得的直线方程为y=bx+a,则以下结论正确的是()A.>b,>aB.>b,<aC.<b,>aD.<b,<a【解析】选C.过(1,0)和(2,2)的直线方程为y=2x-2,画出六点的散点图,回归直线的大概位置如图所示,显然,b>,>a.二、填空题(每小题5分,共15分)6.如果某地的财政收入x与支出y满足线性回归方程y=bx+a+e(单位:亿元),其中b=0.8,a=2,|e|0.5,如果今年该地区财政收入为10亿元,则年支出预计不会超过_亿元. 【解析】因为当x=10时,y=0.8×10+2+e=10+e,又因为|e|0.5,所以y10.5.答案:10.57.已知x,y取值如表:若x,y具有线性相关关系,且回归方程为=0.95x+,则当x=10时,y的值是_. 【解析】由已知=2,=4.5,而回归方程过点(,).则4.5=0.95×2+,所以=2.6.所以当x=10时,y=0.95×10+2.6=12.1.答案:12.18.已知方程=0.85x-82.71是根据女大学生的身高预报她的体重的回归方程,其中x的单位是cm,的单位是kg,那么针对某个体(160,53)的残差是_. 【解析】将x=160代入=0.85x-82.71,得=0.85×160-82.71=53.29,所以残差=y-=53-53.29=-0.29.答案:-0.29三、解答题(每小题10分,共20分)9.关于x与y有以下数据:已知x与y线性相关,由最小二乘法得=6.5,(1)求y与x的线性回归方程.(2)现有第二个线性模型:=7x+17,且R2=0.82.若与(1)的线性模型比较,哪一个线性模型拟合效果比较好,请说明理由.【解析】(1)依题意,设y与x的线性回归方程为=6.5x+.=5,=50,因为=6.5x+经过(,),所以50=6.5×5+,所以=17.5,所以y与x的线性回归方程为=6.5x+17.5.(2)由(1)的线性模型得yi-i与yi-的关系如表:所以(yi-i)2=(-0.5)2+(-3.5)2+102+(-6.5)2+0.52=155.(yi-)2=(-20)2+(-10)2+102+02+202=1 000.所以=1-=1-=0.845.由于=0.845,R2=0.82知>R2,所以(1)的线性模型拟合效果比较好.10.某个服装店经营某种服装,在某周内获纯利y(单位:元)与该周每天销售这种服装件数x之间的一组数据关系见表:已知=280,=45 309,xiyi=3 487.(1)求,;(2)已知纯利y与每天销售件数x之间线性相关,求出y关于x的线性回归方程;(3)求残差平方和、相关指数.【解析】(1)=6,=79.86.(2)由于y与x有线性相关关系,可设线性回归方程为=x+,则4.75,79.86-6×4.75=51.36,所以y关于x的线性回归方程为=4.75x+51.36.(3)列出残差表如下:i1234567yi66697381899091i65.6170.3675.1179.8684.6189.3694.11i0.39-1.36-2.111.144.390.64-3.11所以残差平方和为0.392+(-1.36)2+(-2.11)2+1.142+4.392+0.642+(-3.11)2=37.107 2.相关指数R2=1-0.944 5.1.为了考查两个变量x和y之间的线性相关性,甲、乙两位同学各自独立地做了100次和150次试验,并且利用线性回归方法,求得回归直线分别为l1和l2.已知两个人在试验中发现对变量x的观测数据的平均值都是s,对变量y的观测数据的平均值都是t,那么下列说法正确的是()A.l1和l2有交点(s,t)B.l1与l2相交,但交点不一定是(s,t)C.l1与l2必定平行D.l1与l2必定重合【解析】选A.l1,l2都过样本点的中心(s,t),但斜率不确定.2.随着新型冠状病毒肺炎疫情好转,某地为方便市民出行,推出利用支付宝和微信扫码支付乘车活动,并采用随机优惠鼓励市民扫码支付乘车.该公司某线路公交车队统计了第一周内使用扫码支付的情况,其中x(单位:天)表示活动推出的天数,y(单位:十人次)表示当天使用扫码支付的人次,整理后得到如图所示的统计表1和散点图.表1:x第1天第2天第3天第4天第5天第6天第7天y71220335490148由散点图分析后,可用y=作为该线路公交车使用扫码支付的人次y关于活动推出天数x的回归方程,根据表2的数据,求此回归方程,并预报第8天使用扫码支付的人次(精确到整数).表2:xiyixizi4523.51402 069112其中z=ln y,=zi.参考数据:e5.3200.34,e5.5244.69,e5.7298.87.【解析】由题意得z=ln y=ln ebx+a=bx+a,所以=0.5,所以=-=3.5-0.5×4=1.5,所以z关于x的线性回归方程为=0.5x+1.5,所以y关于x的回归方程为=,当x=8时,=e5.5244.69,所以第8天使用扫码支付的人次约为2 447.

    注意事项

    本文(2021_2021学年高中数学第一章统计案例1.1回归分析的基本思想及其初步应用课时素养评价含解析新人教A版选修1_.doc)为本站会员(可****阿)主动上传,得力文库 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知得力文库 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于得利文库 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

    © 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

    黑龙江省互联网违法和不良信息举报
    举报电话:0468-3380021 邮箱:hgswwxb@163.com  

    收起
    展开