类型材料科学基础学习知识名词解释.doc

收藏

编号:2613437    类型:共享资源    大小:79.52KB    格式:DOC    上传时间:2020-04-24
  
10
金币
分享到微信 分享到微博 分享到QQ空间
关 键 词:
材料科学 基础 学习 知识 名词解释
资源描述:
- 材料科学基础名词解释(上海交大第二版) 第一章原子结构 结合键 结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。 化学键 是指晶体内相邻原子(或离子)间强烈的相互作用。 金属键 金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。 离子键 阴阳离子之间通过静电作用形成的化学键叫作离子键 共价键 由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 范德华力 是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。 氢键 氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。 近程结构 高分子重复单元的化学结构和立体结构合称为高分子的近程结构。它是构成高分子聚合物最底层、最基本的结构。又称为高分子的一级结构 远程结构 由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构 第二章 固体结构 1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。晶体熔化时具固定的熔点,具有各向异性。 2、非晶体:原子是无规则排列的固体物质。熔化时没有固定熔点,存在一个软化温度范围,为各向同性。 3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。 4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。 5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。 6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。 7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。 13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。属于此晶带的晶面称为共带面。 14、晶面间距:晶面间的距离。 18、点群:点群是指一个晶体中所有点对称元素的集合。 19、空间群:用以描述晶体中原子组合所有可能的方式,是确定晶体结构的依据,它是通过宏观和微观对称元素在三维空间的组合而得出的。 20、晶胞原子数:一个晶胞体积内的原子数。 21、点阵常数:晶胞的大小一般是由晶胞的棱边长度来衡量的,它具有表征晶体结构的一个重要基本参数。 22、配位数:指晶体结构中任一原子周围最近邻且等距离的原子数。 23、致密度:指晶体结构中原子体积占总体积的百分数。 24、多晶型:有些固态金属在不同的温度和压力下具有不同的晶体结构,即具有多晶型,转变产物为同素异形体。 25、合金:指由两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。 26、相:指合金中具有同一聚集状态、同一晶体结构和性质并以界面相互隔开的均匀组成部分。 27、固溶体:是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶质原子)所形成的均匀固态溶体,它保持着溶剂的晶体结构类型。 28、中间相:两组元 A和B组成合金时,除了可形成以A为基或以B为基的固溶体(端际固溶体)外,还可能形成晶体结构与A,B两组元不同的新相,由于它们在二元相图上位置总是位于中间,故通常把这些相称为中间相。 29、置换固溶体:当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。 30、间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体。 31、有限固溶体:金属元素彼此之间形成有限溶解的称为有限固溶体。 32、无限固溶体:金属元素彼此之间能形成无限溶解的称为无限固溶体。 33、无序固溶体:溶质原子统计式分布在溶剂晶格的结点上,它们或占据着与溶剂原子等同的位置,或占据着溶剂原子间隙的位置,看不出有什么次序性或规律性,这类固溶体叫无序固溶体。 34、有序固溶体:有些固溶体结构在高温时形成无序固溶体,但在缓慢冷却或低温退火时,溶质原子按适当比例并按一定顺序和方向,围绕着溶质原子重新排列.使溶质,溶剂原子在晶格中占据一定的位置,这一过程称为固溶体的有序化.溶质和溶剂原子呈有序排列的固溶体称为有序固溶体或称超结构: 35、正常价化合物:在元素周期表中,一些金属与电负性较强的IVA,VA,VIA族的一些元素按照化学上的原子价规律所形成的化合物称为正常价化合物。 36、电子化合物:电子化合物是由第一族或过渡族 元素 与第二至第四元素构成的 化合物 ,他们不遵守化合价规律,但满足一定的电子浓度,虽然电子化合物可用 化学式 表示,但实际成分可在一定的范围变动,可溶解一定量的 固溶体 。 38、间隙相:原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过渡族金属),当非金属X和金属M原子半径比小于0.59时,形成具有简单晶体结构的相,称为间隙相。 39、间隙化合物:原子半径较小的非金属元素如C,H,N,B等可与金属元素(主要是过渡族金属),当非金属X和金属M原子半径大于0.59时,形成具有复杂晶体结构的相,通常称为间隙化合物。 第三章晶体缺陷 点缺陷:点缺陷是最简单的晶体缺陷,它是在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷。其特征是在三维空间的各个方向上尺寸都很小,尺寸范围约为一个或几个原子尺寸,故称零维缺陷,包括空位、间隙原子、杂质或溶质原子等。 线缺陷:其特征是在两个方向上尺寸很小,另外一个方向上延伸较长,也称一维缺陷,如各类位错。 面缺陷:其特征是在一个方向尺寸上很小,另外两个方向上扩展很大,也称二维缺陷,晶界、相界、孪晶界和堆垛层错都属于面缺陷。 空位:一个原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离其原来的位置,使点阵中形成空结点。 间隙原子:从空位中跳离,挤入点阵的空隙位置的原子。 刃型位错:一种位错在晶体中有一个刀刃状的多余半原子面的位错形式。 螺型位错:原来与位错线相垂直的品而都将由平而变成螺旋的一种位错形式。 混合位错:滑移矢量既不平行也不垂直于位错线,而与位错线相交成任意角度的位错。 全位错:把伯氏矢量等于点阵矢量或其整数倍的位错称为“全位错” 不全位错:柏氏矢量不等于点阵矢量的不全位错。 柏氏回路:在实际晶体中,西欧那个任一原子出发,围绕位错(避开位错线附近的严重畸变区)以一定的步数作一右旋闭合回路,称为柏氏回路。 柏氏矢量:通常将形成一个位错的晶体的相移矢量定义为该位错的柏氏矢量,用b表示。 柏氏矢量的物理意义:同一晶体中,位错的柏氏矢量愈大,位错强度也愈大,表明该位错导致的点阵畸变愈严重,它所具有的能量也愈高。 柏氏矢量的守恒性:不论所做柏氏回路的大小、形状、位置如何变化,怎样任意扩大、缩小或移动,只要它不与其他位错线相交,对给定的位错所确定的柏氏矢量是一定的。 位错的滑移:在外加应力作用下,通过位错中心附近的原子沿柏氏矢量方向在滑移面上不断地作少量的位移的过程。 交滑移:当某一螺型位错在原滑移面上受阻时,从滑移面转移到与之相交的另一滑移面上的过程叫做交滑移。 位错的攀移:刃型位错在垂直于滑移面的方向上运动,把多余半原子面向上或向下运动的过程。 位错的交割:一个位错在某一滑移面上运动时,会与穿过滑移面的其他位错发生相互作用的过程。 割阶:垂直于位错滑移面得曲折滑移曲线。 扭折:在滑移面上的曲折滑移曲线。 位错密度:单位体积晶体中所含的位错线的总长度。 位错增殖:晶体在受力过程中,位错发生运动,位错数目增加,位错密度变大的过程。 扩展位错:通常把一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错组称为扩展位错。 层错能:层错破坏晶体的完整结构和争产的周期性,使电子发生反常的衍射效应,使晶体增加的能量。 扩展位错交滑移:位错束集呈全螺型位错,然后再由该全位错滑移到另一个滑移面上的过程。 晶界:属于同一固相但位向不同的晶粒之间的界面称为晶界。 亚晶界:相邻亚晶粒之间的界面称为亚晶界。 晶界能:形成单位面积界面时系统的自由能变化。 孪晶界:两个晶体沿一个公共晶面构成晶面对称的位向关系,这两个晶体的公共晶面就称为孪晶面。 相界:具有不同结构的两相之间的分界面称为相界。按结构特点,相界面可分为共格相界、半共格相界和非共格相界三种类型。 第四章固体中原子及分子的运动 质量浓度 单位体积混合物中某组分的质量称为该组分的质量浓度。 扩散 物质分子从高浓度区域向低浓度区域转移,直到均匀分布的现象。 间隙扩散 原子从一个晶格中间隙位置迁移到另一个间隙位置。 空位扩散 通过空位进行跳动的扩散称为空位扩散。 下坡扩散 物质从高浓度向低浓度的扩散。 上坡扩散 物质从低浓度向高浓度的扩散。 稳态扩散 质量浓度不随时间变化而变化的扩散称为稳态扩散。 非稳态扩散 质量浓度随时间变化而变化的扩散称为非稳态扩散。 扩散系数 扩散系数是描述物质扩散难易程度的重要参量。 扩散通量 表示单位时间内通过垂直于扩散方向x的单位面积的扩散物质质量。(J表示) 表面扩散 在样品自由表面发生的扩散称为表面扩散。 第五章 材料的形变和再结晶 1、弹性变形:指外力去除后能够完全恢复的那部分,可从原子间结合力的角度来了解它的物质本性。 2、弹性模量:材料(金属、陶瓷和部分高分子材料)不论是加载还是卸载时,只要在弹性形变的比称为弹性模量。 3、包申格效应::材料经预先加载产生少量塑性变形(小于4%),而后通向加载则σ升高,反向加载则σ下降,此现象称之为包申格效应。 4、弹后效应:一些实际晶体,在加载或卸载时,应变不是瞬时达到其平衡,而是通过一种驰豫过程来完成其变化,在弹性极限σ范围内,应变滞后于外加应力,并和时间有关的现象称为弹性后效或弹滞性。 5、粘弹性:一些晶体,有时甚至多晶体,在比较小的应力时可以同时表现出弹性和黏性,这就是黏弹性现象。 6、塑性变形:应力超过弹性极限,材料发生塑性变形,即产生不可逆的永久变形。 孪生:孪生是塑性变形的另一种形式,它常作为滑移不易进行时的补充。 孪晶面:发生均匀切变的那组晶面称为孪晶面(即(111面))。 孪生方向:孪生面的移动方向称为孪生方向。 孪晶:变形与未变形两部分晶体合称为孪晶。 扭折:在孪生过程中阻力很大,如果继续增大压力,则为了使晶体的形状与外力相适应,当外力超过某一临界值时晶体将会产生局部弯曲,这种变形方式称为扭折。 固溶强化:溶质原子的存在及其固溶度的增加,使基体金属的变形抗力随之提高。 加工硬化:金属材料经过另加工变形后,强度(硬度)显著提高,而塑性则很快下降,即产生了加工硬化现象。 弥散强化:当第二相以细小弥散的微粒均匀分布于基体当中时,将会产生显著的强化作用,称为弥散强化。 形变织构:在塑性变形中,随着形变程度的增加,各个晶粒的滑移面和滑移方向都要向主形变方向转动,逐渐使多晶体中原来取向互不相同的各个晶粒在空间取向上呈现一定程度的规律性,这一现象称为择优取向,这种组织状态则称为形变织构。 回复:回复是一种形核和长大过程,是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。 再结晶:是指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程。 晶粒长大:晶粒长大是指再结晶结束之后晶粒的继续长大。 冷加工:而把再结晶温度以下而又不加热的加工称为冷加工。 热加工:工程上常将再结晶温度以上的加工称为热加工。 动态再结晶:热加工时,由于变形温度高于再结晶温度,故在变形的同时伴随着再结晶过程。 再结晶温度:冷变形金属开始进行再结晶的最低温度称为再结晶温度。 临界变形量:在给定温度下发生再结晶需要一个最小变形量(临界变形度)低于此变形度,不发生再结晶。 再结晶织构:通常具有变形织构的金属经再结晶后的新晶粒仍具有择优取向,称为再结晶织构。 第六章单组元相图及纯晶体的凝固 结晶:原子由不规则排列状态过渡到规则排列状态的过程。 结构起伏:液态结构中原子排列长程无序,短程有序,并且短程有序原子集团不是固定不变的结构,这种现象称为结构起伏。 能量起伏:能量起伏是指体系中每个微小体积所实际具有的能量,会偏离体系平均能量水平而瞬时涨落的现象 过冷度:熔点与实际凝固温度T之差。 均匀形核:新相晶核是在母相中均匀生产的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外边面的影响。 非均匀形核:新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外表面来形核。 晶胚:在液相中时聚时散的短程有序原子集团。 晶核:晶胚长大体系自由能降低的稳定单元。 亚稳相:含自由能比平衡相高的相。 临界晶粒:达到临界半径的晶粒。 临界形核功:形成临界晶核所需的功。 温度梯度:温度随时间的变化率。 平面状:在正的温度梯度下,晶体的生长已接近平面状向前推移。 树枝状:液—固界面不保持平面状而会形成许多伸向液体的分枝,同时在这些晶枝上又可能会长出二次晶枝,在二次晶枝上再长出三次晶枝的结晶形状。 第七章二元系相图及其合金的凝固 相律 热力学平衡条件下,系统的组分数、相数和自由度数之间的相互关系 平衡凝固 物质在平衡条件下由液态至固态的转变。 非平衡凝固 物质在非平衡条件下由液态至固态的转变。 共晶体 共晶合金在共晶温度下凝固时同时结晶出的两个故乡混合物称为共晶组织,或共晶体。 伪晶体 成分在共晶点附近的亚共晶合金或过共晶合金在非平衡条件下获得的共晶组织称为伪晶体。 离异晶体 在先共晶相数量较多而共晶组织甚少的情况下,有时共晶组织中与先共晶相相同的那一相会依附于先共晶相生长,剩下的另一相则单独存在与晶界处,从而使共晶组织的特征消失,这种两相分离的共晶称为离异共晶。 稳定化合物 是指具有一定的熔点,而且在熔点以下都能保持自身固有的结构而不发生分解的化合物 铁素体 铁素体是碳在α-Fe中形成的间隙固溶体。(体心立方晶格) 奥氏体 奥氏体是碳在γ-Fe中形成的间隙固溶体。(面心立方晶格) 渗碳体 铁盒碳相互作用形成的具有复杂晶格的间隙化合物。 珠光体 珠光体是由铁素体盒渗碳体组成的机械混合物。 莱氏体 由奥氏体盒渗碳体组成的机械混合物。 正常凝固 将固溶体合金整体熔化后进行的定向凝固称为正常凝固。 区域熔炼 将固溶体合金局部熔化后进行的定向凝固称为区域熔炼。 成分过冷 纯金属凝固时,其理论凝固温度(Tm)不变,当液态金属实际温度低于Tm引起的过冷称为成分过冷。 第八章三元相图 等边成分三角形:等边三角形的三个顶点分别表示三个组员,三角形的边分别表示三个二元系的成分坐标,则三角形内的任意一点都代表三元系的某一成分。 水平截面:三元相图中的温度轴和浓度三角形垂直,所以固定温度的截面图必定平行于浓度三角形,这样的截面称为水平截面,也称为等温截面。 垂直截面:固定一个成分变量并保留温度变量的截面,必定与浓度三角形垂直,所以称为垂直截面,或称为变温截面。 第九章材料的亚稳态 平衡态:材料体系自由能最低的状态。 亚稳态:材料以高于平衡态时自由能的状态存在,处于一种非平衡的状态。 准晶:原子聚集状态的固体被称为准晶。 非晶:非结晶态,即为玻璃态。 固态相变:材料体系在固态时发生的同素异构转变、共析转变、包析转变、固溶体的脱溶分解、合金有序化等变化过程。 扩散型相变:相变过程需要通过原子扩散来进行的相变过程。 无扩散型相变:在相变过程中原子不发生扩散,仅藉切变重排行程亚稳态新相的相变过程。 时效:使固溶体脱溶的处理过程。 过时效:将固熔处理得到的亚稳态台了再加热到100~200摄氏度保温,过饱和的固溶体发生脱溶分解的过程 名词解释一百单八将 1、晶体 原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。 2、中间相 两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。 3、亚稳相 亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。 4、配位数 晶体结构中任一原子周围最近邻且等距离的原子数。 5、再结晶 冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程) 6、伪共晶 非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。 7、交滑移 当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。 8、过时效 铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ ”,θ ’,和θ。在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ ’,这时材料的硬度强度将下降,这种现象称为过时效。 9、形变强化 金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。 10、固溶强化 由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。 11、弥散强化 许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。 12、不全位错 柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。 13、扩展位错 通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。 14、螺型位错 位错线附近的原子按螺旋形排列的位错称为螺型位错。 15、包晶转变 在二元相图中,包晶转变就是已结晶的固相与剩余液相反应形成另一固相的恒温转变。 16、共晶转变 由一个液相生成两个不同固相的转变。 17、共析转变 由一种固相分解得到其他两个不同固相的转变。 18、上坡扩散 溶质原子从低浓度向高浓度处扩散的过程称为上坡扩散。表明扩散的驱动力是化学位梯 度而非浓度梯度。 19、间隙扩散 这是原子扩散的一种机制,对于间隙原子来说,由于其尺寸较小,处于晶格间隙中,在扩散时,间隙原子从一个间隙位置跳到相邻的另一个间隙位置,形成原子的移动。 20、成分过冷 界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷。 21、一级相变 凡新旧两相的化学位相等,化学位的一次偏导不相等的相变。 22、二级相变: 从相变热力学上讲,相变前后两相的自由能(焓)相等,自由能(焓)的一阶偏导数相等,但二阶偏导数不等的相变称为二级相变,如磁性转变,有序-无序转变,常导-超导转变等 23、共格相界 如果两相界面上的所有原子均成一一对应的完全匹配关系,即界面上的原子同时处于两相晶格的结点上,为相邻两晶体所共有,这种相界就称为共格相界。 24、调幅分解 过饱和固溶体在一定温度下分解成结构相同、成分不同的两个相的过程。 25、回火脆性 淬火钢在回火过程中,一般情况下随回火温度的提高,其塑性、韧性提高,但在特定的回火温度范围内,反而形成韧性下降的现象称为回火脆性。对于钢铁材料存在第一类和第二类回火脆性。他们的温度范围、影响因素和特征不同。 26、再结晶退火 所谓再结晶退火工艺,一般是指将冷变形后的金属加热到再结晶温度以上,保温一段时间后,缓慢冷却至室温的过程。 27、回火索氏体 淬火刚在加热到400-600℃温度回火后形成的回火组织,其由等轴状的铁素体和细小的颗粒状(蠕虫状)渗碳体构成。 28、有序固溶体 当一种组元溶解在另一组元中时,各组元原子分别占据各自的布拉维点阵的一种固溶体,形成一种各组元原子有序排列的固溶体,溶质在晶格完全有序排列。 29、非均匀形核 新相优先在母相中存在的异质处形核,即依附于液相中的杂质或外来表面形核。 30、马氏体相变 钢中加热至奥氏体后快速淬火所形成的高硬度的针片状组织的相变过程。 31、贝氏体相变 钢在珠光体转变温度以下,马氏体转变温度以上范围内(550℃-230℃)的转变称为贝氏体转变。 32、铝合金的时效 经淬火后的铝合金强度、硬度随时间延长而发生显著提高的现象称之为时效,也称铝合金的时效。 33、热弹性马氏体 马氏体相变造成弹性应变,而当外加弹性变性后可以使马氏体相变产生逆转变,这种马氏体称为热弹性马氏体。或马氏体相变由弹性变性来协调。这种马氏体称为热弹性马氏体。 34、柯肯达尔效应 反映了置换原子的扩散机制,两个纯组元构成扩散偶,在扩散的过程中,界面将向扩散速率快的组元一侧移动。 35、热弹性马氏体相变 当马氏体相变的形状变化是通过弹性变形来协调时,称为热弹性马氏体相变。 36、非晶体 原子没有长程的周期排列,无固定的熔点,各向同性等。 37、致密度 晶体结构中原子体积占总体积的百分数。 38、多滑移 当外力在几个滑移系上的分切应力相等并同时达到了临界分切应力时,产生同时滑移的现象。 39、过冷度 相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之差称过冷度。 40、间隙相 当非金属(X)和金属(M)原子半径的比值rX/rM<0.59 时,形成的具有简单晶体结构的相,称为间隙相。 41、全位错 把柏氏矢量等于点阵矢量或其整数倍的位错称为全位错。 42、滑移系 晶体中一个滑移面及该面上一个滑移方向的组合称一个滑移系。 43、离异共晶 共晶体中的α相依附于初生α相生长,将共晶体中另一相β推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特点消失,这种两相分离的共晶体称为离异共晶。 44、均匀形核 新相晶核是在母相中存在均匀地生长的,即晶核由液相中的一些原子团直接形成,不受杂质粒子或外表面的影响。 45、刃型位错 晶体中的某一晶面,在其上半部有多余的半排原子面,好像一把刀刃插入晶体中,使这一晶面上下两部分晶体之间产生了原子错排,称为刃型位错。 46、细晶强化 晶粒愈细小,晶界总长度愈长,对位错滑移的阻碍愈大,材料的屈服强度愈高。晶粒细化导致晶界的增加,位错的滑移受阻,因此提高了材料的强度。 47、双交滑移 如果交滑移后的位错再转回和原滑移面平行的滑移面上继续运动,则称为双交滑移。 48、单位位错 把柏氏矢量等于单位点阵矢量的位错称为单位位错。 49、反应扩散 伴随有化学反应而形成新相的扩散称为反应扩散。 50、晶界偏聚 由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象。 51、柯氏气团 通常把溶质原子与位错交互作用后,在位错周围偏聚的现象称为气团,是由柯垂尔首先提出,又称柯氏气团。 52、形变织构 多晶体形变过程中出现的晶体学取向择优的现象叫形变织构。 53、点阵畸变 在局部范围内,原子偏离其正常的点阵平衡位置,造成点阵畸变。 54、稳态扩散 在稳态扩散过程中,扩散组元的浓度只随距离变化,而不随时间变化。 55、包析反应 由两个固相反应得到一个固相的过程为包析反应。 56、非共格晶界 当两相在相界处的原子排列相差很大时,即错配度δ很大时形成非共格晶界。同大角度晶界相似,可看成由原子不规则排列的很薄的过渡层构成。 57、置换固溶体 当溶质原子溶入溶剂中形成固溶体时,溶质原子占据溶剂点阵的阵点,或者说溶质原子置换了溶剂点阵的部分溶剂原子,这种固溶体就称为置换固溶体。 58、间隙固溶体 溶质原子分布于溶剂晶格间隙而形成的固溶体称为间隙固溶体。 59、二次再结晶 再结晶结束后正常长大被抑制而发生的少数晶粒异常长大的现象。 60、伪共析转变 非平衡转变过程中,处在共析成分点附近的亚共析、过共析合金,转变终了组织全部呈共析组织形态。 61、肖脱基空位 在个体中晶体中,当某一原子具有足够大的振动能而使振幅增大到一定程度时,就可能克服周围原子对它的制约作用,跳离其原来位置,迁移到晶体表面或内表面的正常结点位置上而使晶体内部留下空位,称为肖脱基空位。 62、弗兰克尔空位 离开平衡位置的原子挤入点阵中的间隙位置,而在晶体中同时形成相等数目的空位和间隙原子。 63、非稳态扩散 扩散组元的浓度不仅随距离x 变化,也随时间变化的扩散称为非稳态扩散。 64、时效 过饱和固溶体后续在室温或高于室温的溶质原子脱溶过程。 65、回复 指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段。 66、相律 相律给出了平衡状态下体系中存在的相数与组元数及温度、压力之间的关系,可表示为:f=C+P-2,f 为体系的自由度数,C 为体系的组元数,P 为相数。 67、合金 两种或两种以上的金属或金属与非金属经熔炼、烧结或其他方法组合而成并具有金属特性的物质。 68、孪晶 孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。 69、相图 描述各相平衡存在条件或共存关系的图解,也可称为平衡时热力学参量的几何轨迹。 70、孪生 晶体受力后,以产生孪晶的方式进行的切变过程叫孪生。 71、晶界 晶界是成分结构相同的同种晶粒间的界面。 72、晶胞 在点阵中取出一个具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。 73、位错 是晶体内的一种线缺陷,其特点是沿一条线方向原子有规律地发生错排;这种缺陷用一线方向和一个柏氏矢量共同描述。 74、偏析 合金中化学成分的不均匀性。 75、金属键 自由电子与原子核之间静电作用产生的键合力。 76、固溶体 是以某一组元为溶剂,在其晶体点阵中溶入其他组元原子(溶剂原子)所形成的均匀混合的固态溶体,它保持溶剂的晶体结构类型。 77、亚晶粒 一个晶粒中若干个位相稍有差异的晶粒称为亚晶粒。 78、亚晶界 相邻亚晶粒间的界面称为亚晶界。 79、晶界能 不论是小角度晶界或大角度晶界,这里的原子或多或少地偏离了平衡位置,所以相对于晶体内部,晶界处于较高的能量状态,高出的那部分能量称为晶界能,或称晶界自由能。 80、表面能 表面原子处于不均匀的力场之中,所以其能量大大升高,高出的能量称为表面自由能(或表面能)。 81、界面能 界面上的原子处在断键状态,具有超额能量。平均在界面单位面积上的超额能量叫界面能。 82、淬透性 淬透性指合金淬成马氏体的能力,主要与临界冷速有关,大小用淬透层深度表示。 83、淬硬性 淬硬性指钢淬火后能达到的最高硬度,主要与钢的含碳量有关。 84、惯习面 固态相变时,新相往往在母相的一定晶面开始形成,这个晶面称为惯习面。 85、索氏体 中温段珠光体转变产物,由片状铁素体渗碳体组成,层片间距较小,片层较薄。 86、珠光体 铁碳合金共析转变的产物,是共析铁素体和共析渗碳体的层片状混合物。 87、莱氏体 铁碳相图共晶转变的产物,是共晶奥氏体和共晶渗碳体的机械混合物。 88、柏氏矢量 描述位错特征的一个重要矢量,它集中反映了位错区域内畸变总量的大小和方向,也使位错扫过后晶体相对滑动的量。 89、空间点阵 指几何点在三维空间作周期性的规则排列所形成的三维阵列,是人为的对晶体结构的抽象。 90、范德华键 由瞬间偶极矩和诱导偶极矩产生的分子间引力所构成的物理键。 91、位错滑移 在一定应力作用下,位错线沿滑移面移动的位错运动。 92、异质形核 晶核在液态金属中依靠外来物质表面或在温度不均匀处择优形成。 93、结构起伏 液态结构的原子排列为长程无序,短程有序,并且短程有序原子团不是固定不变的,它是此消彼长,瞬息万变,尺寸不稳定的结构,这种现象称为结构起伏。 94、重心法则 处于三相平衡的合金,其成分点必位于共轭三角形的重心位置。 95、应变时效 第一次拉伸后,再立即进行第二次拉伸,拉伸曲线上不出现屈服阶段。但第一次拉伸后的低碳钢试样在室温下放置一段时间后,再进行第二次拉伸,则拉伸曲线上又会出现屈服阶段。不过,再次屈服的强度要高于初次屈服的强度。这个试验现象就称为应变时效。 96、枝晶偏析 固溶体在非平衡冷却条件下,匀晶转变后新得的固溶体晶粒内部的成分是不均匀的,先结晶的内核含较多的高熔点的组元原子,后结晶的外缘含较多的低熔点的组元原子,而通常固溶体晶体以树枝晶方式长大,这样,枝干含高熔点组元较多,枝间含低熔点组元原子多,造成同一晶粒内部成分的不均匀现象。 97、临界变形度 给定温度下金属发生再结晶所需的最小预先冷变形量。 98、电子化合物 电子化合物是指由主要电子浓度决定其晶体结构的一类化合物,又称休姆-罗塞里相。凡具有相同的电子浓度,则相的晶体结构类型相同。 99、同质异构体 化学组成相同由于热力学条件不同而形成的不同晶体结构。 100、再结晶温度 形变金属在一定时间(一般1h)内刚好完成再结晶的最低温度。 101、布拉菲点阵 除考虑晶胞外形外,还考虑阵点位置所构成的点阵。 102、配位多面体 原子或离子周围与它直接相邻结合的原子或离子的中心连线所构成的多面体,称为原子或离子的配位多面体。 103、施密特因子 亦称取向因子,为cosΦcosλ, Φ为滑移面与外力F 中心轴的夹角,λ为滑移方向与外力F 的夹角。 104、拓扑密堆相 由两种大小不同的金属原子所构成的一类中间相,其中大小原子通过适当的配合构成空间利用率和配位数都很高的复杂结构。由于这类结构具有拓扑特征,故称这些相为拓扑密堆相。 105、间隙化合物 当非金属(X)和金属(M)原子半径的比值rX/rM>0.59 时,形成具有复杂晶体结构的相,通常称为间隙化合物。 106、大角度晶界 多晶材料中各晶粒之间的晶界称为大角度晶界,即相邻晶粒的位相差大于10o的晶界。 107、小角度晶界 相邻亚晶粒之间的位相差小于10 ,这种亚晶粒间的晶界称为小角度晶界,一般小于2 ,可分为倾斜晶界、扭转晶界、重合晶界等。 108、临界分切应力 滑移系开动所需的最小分切应力;它是一个定值,与材料本 身性质有关,与外力取向无关。 1 材料引言 玻璃 玻璃是由熔体过冷所制得的非晶态材料。 水泥 水泥是指加入适量水后可成塑性浆体,既能在空气中硬化又能在水中硬化,并能够将砂,石等材料牢固地胶结在一起的细粉状水硬性材料。 耐火材料 耐火材料是指耐火度不低于1580摄氏度的无机非金属材料。硅质耐火材料,镁质耐火材料,熔铸耐火材料,轻质耐火材料,不定形耐火材料。 高聚物 高聚物是由一种或几种简单低分子化合物经聚合而组成的分子量很大的化合物。 胶粘剂 胶粘剂是指在常温下处于粘流态,当受到外力作用时,会产生永久变形,外力撤去后又不能恢复原状的高聚物。 合金 合金是由两种或两种以上的金属元素,或金属元素与非金属元素形成的具有金属特性的新物质 固溶体 当合金的晶体结构保持溶质组元的晶体结构时,这种合金成为一次固溶体或端际固溶体,简称固溶体。 电子化合物 电子化合物是指具有一定(或近似一定)的电子浓度值,且结构相同或密切相关的相。 间隙化合物 间隙化合物(或间隙相)是由原子半径较大的过渡金属元素(Fe,Cr,Mn,Mo,W,V等)和原子半径较小的非(准)金属元素(H,B,C,N,Si,等)形成的金属间化合物。 传统无机非金属材料 主要是指由SiO2及其硅酸盐化合物为主要成分制成的材料,包括陶瓷,玻璃,水泥和耐火材料等。 新型无机非金属材料 是用氧化物,氮化物,碳化物,硼化物,硫化物,硅化物以及各种无机非金属化合物经特殊的先进工艺制成的材料。 2 晶体结构 晶体 晶体是离子,原子或分子按一定的空间结构排列所组成的固体,其质点在空间的分布具有周期性和对称性,因而,晶体具有规则的外形。 晶胞 晶胞是从晶体结构中取出来的反应晶体周期性和对称性的重复单元。 晶体结构 晶体结构是指晶体中原子或分子的排列情况,由空间点阵+结构基元而构成,晶体结构的形式是无限多的。 空间点阵 空间点阵是把晶体结构中原子或分子等结构基元抽象为周围环境相同的阵点之后,描述晶体结构的周期性和对称性的图像。 晶面 可将晶体点阵在任何方向上分解为相互平行的节点平面,这样的结点平面成为晶面。 晶面指数 结晶学中经常用(h k l)来表示一组平行晶面,成为晶面指数。 晶面族 在对称性高的晶体(如立方晶系)中,往往有并不平行的两组以上的晶面,它们的原子排列状况是相同的,这些晶面构成一个晶面族。 晶向族 晶体中原子排列周期相同的所有晶向为一个晶向族,用{u v w}表示。 晶带或晶带面 在结晶学中,把同时平行某一晶向[u v w]的所有晶面成为一个晶带(Zone)或晶带面[Plane of a Zone],该晶向[u v w]成为这个晶带的晶带轴(Zone Axis),一个晶带中任一晶面(h k l)与其晶带轴[u v w]之间的关系满足晶带轴定理:hu+kv+lw=0 离子键 离子键是正,负离子依靠静电库仑力而产生的键合。 共价键 共价键是原子之间通过共用电子对或通过电子云重叠而产生的键合。 金属键 金属键是失去最外层电子(价电子)的原子实和自由电子组成的电子云之间的静电库仑力而产生的键合。 范德华键(分子键) 范德华键(分子键)是通过“分子力”而产生的键合。 氢键 氢键是指氢原子同时与两个电负性很大而原子半径较小的原子(O,F,N等)相结合所形成的键。 晶体的结合能 晶体的结合能Eb定义为:组成晶体的N个原子处于“自由”状态时的总能量EN与晶体处于稳定状态时的总能量E0的差值,即Eb=EN-E0 晶格能 对于离子晶体而言,其晶格能EL定义为:1mol离子晶体中的正负离子,由相互远离的气态结合成离子晶体时所释放出的能量。 空间利用率(原子堆积系数)——晶胞中原子体积与晶胞体积的比值。 孤立态原子半径 从原子核中心到核外电子的几率分布趋向于零的位置间的距离。这个半径亦称为范德华半径。 金属原子半径 相邻两原子面间距离的一半。如果是离子晶体,则定义正,负离子半径之和等于相邻两原子面间的距离。 配位数 一个原子(或离子)周围同种原子(或异号离子)的数目成为原子或离子的配位数,用CN来表示。 离子极化 在离子紧密堆积时,带电荷的离子所产生的电场,必然要对另一个离子的电子云产生吸引或排斥作用,使之发生变形,这种现象称为极化。 哥希密特化学定律 晶体结构取决于其组成基元(原子,离子或离子团)的数量关系,大小关系及极化性能。 同质多晶 这种化学组成相同的物质,在不同的热力学条件下形成结构不同的晶体的现象,成为同质多晶。由此所产生的每一种化学组成相同但结构不同的晶体,成为变体。 类质同晶 化学组成相似或相近的物质,在相同的热流条件下,形成的晶体具有相同的结构,这种现象称为类质同晶现象。 位移性转变 仅仅是结构畸变,转变前后结构差异小,转变时并不打开任何键或改变最邻近的配位数,只是原子的位置发生少许位移,使次级配位有所改变。 重建性转变 不能简单地通过原子位移来实现,转变前后结构差异大,必须破坏原子间的键,形成一个具有新键的结构。 Hume-Rothery规则 如果某非金属元素的原子能以单键与其他原子共价结合形成单质晶体,则每个原子周围共价单键的数目为8减去元素所在周期表的族数(m),即共价单键数目为(8-m)。这个规则亦称为(8-m)规
展开阅读全文
提示  得力文库 - 分享文档赚钱的网站所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:材料科学基础学习知识名词解释.doc
链接地址:https://www.deliwenku.com/p-2613437.html
关于得利文库 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com  

收起
展开